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Predicting missing links in real networks is an important open problem in network science to
which considerable efforts have been devoted, giving as a result a vast plethora of link prediction
methods in the literature. In this work, we take a different point of view on the problem and focus
on predictability instead of prediction. By considering ensembles defined by well-known network
models, we prove analytically that even the best possible link prediction method, given by the
ensemble connection probabilities, yields a limited precision that depends quantitatively on the
topological properties—such as degree heterogeneity, clustering, and community structure—of the
ensemble. This suggests an absolute limitation to the predictability of missing links in real networks,
due to the irreducible uncertainty arising from the random nature of link formation processes. We
show that a predictability limit can be estimated in real networks, and we propose a method to
approximate such bound from real-world networks with missing links. The predictability limit gives
a benchmark to gauge the quality of link prediction methods in real networks.

Limits of predictability, the degree to which a system’s
state can be correctly forecasted, have been explored in
different contexts, including weather and climate [1], hu-
man mobility [2], and biological evolution [3]. One of
the causes that undermines perfect predictability in these
systems—apart from lack of information, observational
errors, or variability in their environmental conditions—
can be found in the inherent randomness of some of the
processes and phenomena that shape their organization
and behavior.

In complex networks [4], randomness not only domi-
nates the dynamical interactions between the states of
nodes in many dynamical processes [5], which limits the
ability to predict specific configurations of dynamical
states at any given time [6], but also link formation. The
structure of complex networks is far from deterministic
and can be modeled in a stochastic framework where the
likelihood of links to exist is characterized probabilisti-
cally. The set of link probabilities defines a network en-
semble, that can be studied to gain insight into some
specific network that can be considered to be an instance
of such ensemble instead of an independent entity.

This uncertainty in the likelihood of connections repre-
sents an intrinsic feature of networks that affects the pre-
dictability of their structure [7]. Link prediction meth-
ods [8, 9] are able to give information about missing or
future interactions in networks by exploiting non-trivial
regularities in their organization—heterogeneous degree
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distributions, high levels of clustering, degree-degree cor-
relations, communities—, at the local or at the global
level. Different link prediction methods typically give dif-
ferent results on the same network and, although some
methods may perform comparatively better than others,
it is not clear which is the best precision that can be
achieved.

The hypothesis is that, regardless of how much link
prediction methods improve, they will always present an
irreducible lack of accuracy in real networks as a conse-
quence of the random nature of link-formation processes.
In this work, we address the question of what is the max-
imal expected precision of the best possible link predic-
tion method for a given network ensemble, that simply
corresponds to ranking the likelihoods of missing links
according to the corresponding connection probabilities
in the ensemble. Then, we turn to real networks to show
that inferred connection probabilities in well-fitted net-
work models of fully observed real networks allow to es-
timate an limit to the predictability of missing links, and
we propose a method to approximate this bound from
real networks with missing links.

I. PREDICTABILITY OF MISSING LINKS IN
NETWORK ENSEMBLES

An ensemble EN is defined as a set of networks G of
N nodes generated by assigning undirected links between
pairs of nodes i and j with independent pairwise proba-
bilities {pij}, where the indices run from 1 to N . There-
fore, every network G in the ensemble is weighted by a



2

probability P (G), given by

P (G) =
∏
i<j

p
aij
ij (1− pij)1−aij , (1)

where the adjacency matrix entries {aij} take the value
aij = 1 if i and j are connected or aij = 0 otherwise.
Therefore,

∑
G P (G) = 1.

Given a graph G, we construct an observed graph Gobs

by removing a fraction q of links. As it is customary
in the link prediction literature, we are making the as-
sumption that links are removed uniformly at random.
Nevertheless, it would be in principle possible to extend
our results to more general noise channels.

A link prediction methodM can be regarded as a map
Gobs 7→ Ginf , or Ginf = M(Gobs), that produces a new
graph Ginf by adding predicted links to Gobs such that
both G and Ginf have the same number of links (we as-
sume that the number of missing links is known). Let
Q ≡ Q(G,Gobs, Ginf) be the precision of the prediction,
defined as the fraction of predicted links that belong to
G. Thus, if Ginf = G, Q = 1. The expected precision can
be written as 〈Q〉 =

∑
Gobs

P (Gobs)Q̄(Gobs, Ginf), where

Q̄(Gobs, Ginf) stands for the expected optimal precision
over all possible original graphs yielding Gobs upon ran-
dom removal of links.

For a given ensemble EN , the optimal strategy for link
prediction, that is, the one maximizing the expected pre-
cision 〈Q〉 in link prediction experiments over ensemble
instances, is the one that generates Ginf from Gobs by
adding the links according to the connection probabili-
ties {pij} ranked in decreasing order. We give a proof in
Appendix A, from where it is easy to see that

Q̄(Gobs, G
opt
inf ) =

1

L

L∑
l=1

qpl
1− pl + qpl

, (2)

where L is the number of missing links and index l runs
over the set of potential links of Gobs, with the corre-
sponding ensemble probabilities ordered in decreasing or-
der, pl ≥ pl+1, ∀l.

From the expression above, we observe that the ex-
pected optimal precision decreases as the number of miss-
ing links decreases and it converges to the mean of the
top-L0 connection probabilities in the ensemble —where
L0 stands for the number of links in the original graph
G—, when q is maximal (notice that, in the special case
in which the ensemble contains a single network, all the
pl are either 0 or 1, so there would be no dependence
on q whatsoever). In fact, the precision curve is an in-
creasing function of the number of removed links. This
apparently counter-intuitive result stems from the fact
that, as the fraction of missing links q increases, the ra-
tio of missing links over potential links in Gobs, given
by qL0

N(N−1)/2−(1−q)L0
, increases and so the probability of

missing an actually missing link decreases. Therefore,
the statistical power of the method, i.e. the probability
that the prediction of a missing link is correct, increases

with q. Notice that instead of precision one could con-
sider AUC or specificity, which might exhibit a different
behaviour as a function of q, as a measure of predictabil-
ity. However, precision not only has a simple interpre-
tation, but it better captures the performance of link
prediction methods in situations where the number of
links predicted is relatively small as compared to the total
number of disconnected pairs in the network. This might
be particularly relevant in real applications in e.g. biol-
ogy, where assessing whether a link actually exists has
an associated cost and, therefore, one is constrained to
verifying only the top-ranked predicted links.

A. Assessing the dependence of link predictability
on topological features

We give the name of OS predictability curve to the
curve of precision values of the optimal strategy (OS)
as a function of the fraction of missing links. Given an
ensemble, the theoretical OS predictability curve can be
estimated by computing the ratio between the expected
number of correct predictions of the OS and the expected
number of non-observed links of incomplete ensemble
graphs, see Appendix B. This estimation allows us to
quantify the effects of different topological properties —
degree heterogeneity, clustering, number of communities,
...— on the ensemble predictability as a function of its
parameters.

In Erdős-Rényi (ER) networks [10, 11], where all pairs
of nodes have the same connection probability p, the OS
predictability curve can be computed exactly (see Ap-
pendix B) and reaches very low accuracies in accordance
with previous reports [7, 12], see Fig. S1 in Supplemen-
tary Information. The unpredictability of the ER model
is easily understood from the uniformity of link proba-
bilities, which leads to a lack of connectivity patterns to
be exploited by link prediction algorithms.

More structured ensembles show accuracies that are
parameter dependent. We considered the soft Config-
uration Model (sCM) [13], producing maximally ran-
dom graphs with a given expected degree sequence, the
S1 model [14], producing maximally random geometric
graphs with given expected degree sequence and level
of clustering, and the degree-corrected Stochastic Block
Model (dc-SBM) [15], a generalized block model that
accounts for heterogeneities in the degrees to generate
networks with given mesoscopic structure, see details in
Appendix C 3.

The results of the estimation of the theoretical OS pre-
dictability curves for these ensembles are displayed in
Fig. 1. In Fig. 1a, the behaviour of the predictability
curve in the sCM is shown for different values of the
power-law degree distribution exponent γ in the typical
range observed in real-world networks, γ ∈ [2, 3]. As the
degree distribution becomes increasingly heterogeneous
(for smaller values of γ), the resulting networks exhibit
increasingly large predictability. In Fig. 1b, we study
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FIG. 1. Dependence of the OS predictability curve on topological structure. For every model, we have generated
five ensembles with different model parameters and computed the corresponding theoretical OS predictability curve. a: Soft
Configuration Model as a function of the exponent of the degree-distribution γ. To avoid unnecessary fluctuations, the degree
distribution includes a natural cutoff. b: S1 model as a function of β, which regulates the mean local clustering coefficient. In
this case, as well as in c, the degree distribution exponent has been set to γ = 2.5. c: Degree-corrected Stochastic Block Model
as a function of the number of blocks Nb, with λ = 0.5. The black dashed curve in b and c shows the OS curve for the sCM
for γ = 2.5, i.e., the green curve in a.

the effect of the clustering coefficient in the S1 model,
in which the mean local clustering is a monotonically
increasing function of β (see Appendix C 2). In real net-
works, this parameter is usually found to be in the range
β ∈ (1, 3). In this case, predictability grows with clus-
tering. Notice further that this result is consistent with
the fact that the overall predictability of S1 networks is
much higher than that of the sCM, the latter exhibiting
null clustering in the thermodynamic limit. Figure 1c
shows the effect of the community structure via the num-
ber of blocks (communities), Nb, in the dc-SBM. Again,
we observe an unambiguous effect on the resulting en-
semble predictability, this time increasing with increasing
Nb. We therefore observe a clear pattern in these results.
As expected, the predictability of the network ensembles
tends to decrease as they become increasingly similar to
purely random graphs. This includes decreasing degree
heterogeneity, clustering coefficient, or community struc-
ture.

B. The OS predictability curve as a bechmark for
link prediction

We compared the OS predictability curve against the
precisions of several link prediction methods on the dif-
ferent network ensembles analysed in this work using nu-
merical simulations. We considered six widely applied
link prediction methods. Four of them—Common Neigh-
bors (CN) [16], Adamic-Adar (AA) [17], Resource Al-
location (RA) [18], and Cannistraci-Hebb (CH) [19]—
exploit local connectivity patterns, while the other two—
Structural Perturbation Method (SPM) [7] and Fast
probability Block Model (FBM) [20]—are global (see
Supplementary Information (SI) for details). For each
method, the prediction was done by computing the rank-

ing once from Gobs.

The results for the different ensembles are shown in
Fig. 2a, Fig. 2b, Fig. 2c, respectively. See also Fig. S1
in Supplementary Information, displaying the OS pre-
dictability curve in ER networks for the different link
prediction methods. As expected, the optimal strategy
—the best possible method— gives the best results in all
cases. In Erdős-Rényi (ER) networks [10, 11], link pre-
diction is insensitive to the method used and all of them
reach the precision curve of the optimal strategy (see Ap-
pendix B for a theoretical justification in the context of
our theoretical framework), reaching very low accuracies
in accordance with previous reports [7, 12]. The other
ensemble models show link prediction accuracies signif-
icantly above those for the ER ensemble, being the S1

ensemble the one with the highest predictability and, at
the same time, the one in which link prediction methods
perform worse.

To further illustrate this point, we infer the ensemble
connection probabilities in the sCM from observed, in-
complete networks and then use the resulting ranking as a
link prediction method, which we name the Configuration
Model Assumption (CMA). These connection probabili-
ties are easy to estimate. In the sCM, each node i is as-
signed an expected degree which coincides approximately
with the resulting degree ki obtained in realizations of the
model. Hence, after randomly removing a fraction q of
links from an ensemble network, we expect the observed
degree of every node to become kobs

i ≈ (1 − q)ki. Thus,
given the observed degrees kobs

i in the incomplete graph,
we can estimate the original-network degrees and approx-
imate the connection probabilities accordingly using their
definition, see Appendix C 1. We then use the inferred
probabilities as scores in link prediction experiments on
synthetic networks belonging to all the considered en-
sembles. As the results in Fig. 2a-c show, the CMA
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FIG. 2. Precision as a function of the fraction of missing links for different link prediction methods on different
network ensembles. a-c: For each ensemble and value of the fraction of missing links q, we generated 10 networks G
and, for each one of them, we generated 100 incomplete networks Gobs on which the link prediction methods were applied.
The shaded areas represent the standard deviation of the results. The OS curves correspond to the theoretical limit computed
through numerical simulations which implement the optimal strategy. In all cases, we have set N = 1000 nodes. Also, we
have set 〈k〉 = 10 and power-law degree distributions with exponent γ = 2.5. a: Soft Configuration Model. b: S1 model with
β = 1.5. c: Degree-corrected Stochastic Block Model with λ = 0.5 and 7 equiprobable blocks. d-f : Comparison between the
simulated OS predictability curve and the Structural Consistency index [7] (details in SI).

method works extremely well for networks belonging to
the sCM ensemble, achieving a precision curve higher
than any other link prediction method, nearly matching
the theoretical maximum given by the OS predictability
curve. However, the same link prediction method fails
when used on completely different networks, like the S1-
model ensemble networks. Interestingly, the results for
CMA are comparable to other link prediction methods
on dc-SBM networks.

We also compared the OS predictability curve with
the structural consistency index [7], see Fig. 2d-f. No-
tice that the structural consistency index is not a link
prediction method but it was proposed to estimate the
link predictability of a network based on the assumption
that removing a small subset of links at random from
the given network does not change its structural features
(further details in SI). However, the results for low val-
ues of q in the sCM and the dc-SBM ensembles in Fig. 2
show that the Structural Consistency index sometimes
gives bounds that are impossible to achieve, see also the
results for the ER ensemble in SI. Conversely, the Struc-
tural Consistency index can underestimate the limit to
link predictability, actually clearly surpassed by some of

the link prediction methods used here, like CMA in the
sCM ensemble.

II. ESTIMATING THE OS PREDICTABILITY
CURVE IN REAL NETWORKS

The inference of the ensemble connection probabili-
ties from an observed real graph considered as incom-
plete is a very difficult problem for models other than
the sCM. Nevertheless, we can still evaluate the pre-
dictability curve. As a preliminary step, we infer first
the ensemble probabilities from the original network, be-
fore any links have been removed, and use them to apply
the optimal strategy on link prediction experiments. The
resulting precisions hence indicate the limits of an ideal
model-based link prediction strategy, that is, in which the
ensemble probabilities could be accurately inferred from
the incomplete network. Second, we propose a method
to estimate the OS predictability curve in real networks
with missing links.
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A. Inferring the OS predictability curve in fully
observed real networks

We apply the aforementioned approach on eight dif-
ferent real networks from different domains: transitions
between codewords in western modern music [21] (Mu-
sic); connections between neurons within the Drosophila
optic medulla [22] (Drosophila); international trade rela-
tionships in 2013 [23] (WTW); the Internet at the Au-
tonomous Systems level [24] (Internet); a food web in
the Florida Bay ecosystem [25] (Florida F. W.); adja-
cency between words in the novel David Copperfield by
Charles Dickens [26] (Word Adjacency); the social net-
work between members of a karate club [27] (Karate);
and copurchases of books in Amazon about US poli-
tics [28] (Polbooks) (more details in Appendix D).

We inferred the connection probabilities of each of
the networks—before links were randomly removed—in
a suitable ensemble model. It should be stressed that, a
priori, there is no obvious way to determine which net-
work model is most adequate for a given real network.
However, in this paper we focus on the dc-SBM and the
S1, since both have proved to be able to describe real-
network topologies. The network-specific choice between
this two models, on the other hand, is based on the com-
puted likelihood for the network to be generated by the
model (see Appendix C 4). Once the ensemble proba-
bilities were determined, we compared the inferred OS
predictability curve, obtained by applying the optimal
strategy using the inferred ensemble probabilities, with
the results given by link prediction methods as a func-
tion of the number of missing links. The comparison is
shown in Fig. 3. Notice that the OS predictability curve
can be used to benchmark currently existing link predic-
tion methods, as their precisions, averaged over random
link removals, can now be compared against a theoretical
upper-bound. The Music, Drosophila, WTW, and Inter-
net networks are well described by the S1 model, due
to their heterogeneous degree distributions and high lev-
els of clustering. These networks were embedded in the
underlying geometry assumed in the model by finding
the parameters that maximise the likelihood for the real
graphs to be generated by the model, following the same
approach as in Refs. [29, 30]. Once the angular positions
of the nodes in the underlying one-dimensional sphere,
or circle, and the hidden degrees are found, the S1-model
connection probabilities (see Eq. (C3) in Appendix C 2)
between all pairs of nodes define an ensemble of networks
which are similar to the real one. We use these proba-
bilities to compute the OS predictability curves shown in
Fig. 3a-d, which lay well above the precisions obtained
by other link prediction methods.

A similar result is observed on the four datasets well
described by the dc-SBM, as depicted in Fig. 3e-h, where
we show the results for the Florida Food Web, Word Ad-
jacency, Karate, and Polbooks networks. To compute the
connection probabilities of a given network, it is fitted to
a dc-SBM to find its community structure using a sta-

tistical inference and a Monte Carlo sampling [31]. This
procedure computes the number of groups, K, and the
group assignment, g, for the network to assign a connec-
tion probability to every pair of nodes, see Appendix C 3
for details. Results in Fig. 3e-h show that, even if fluctu-
ations are more important than in the previous scenario,
the precisions obtained by the different link prediction
methods are still lower than the OS predictability curve.

B. Inferring the OS predictability curve in real
networks with missing links

The inference of the OS predictability curve in real
networks with missing links presents an evident difficulty
as it requires knowledge of the original network, which is
obviously inaccessible —as it is to be predicted— to com-
pute the ensemble probabilities pij . To overcome this is-
sue, we propose a method to estimate the OS predictabil-
ity curve directly from the observed network structure by
computing a set of connection probabilities that approx-
imate those in the original ensemble. Notice that, even
if this estimation could not be good enough to use the
optimal strategy with the inferred probabilities as a link
prediction method, the estimation of the OS predictabil-
ity curve is still accurate as we show in Fig. 4. The results
of the inferred OS predictability curve in real networks
with missing links are compared with the inference tak-
ing into account the complete original counterparts as
reported in Fig. 3. In all networks, the quality of the
inferences is very good, both for the S1 network model
ensemble and for the dc-SBM ensemble.

We explain our algorithm in what follows. Suppose
that network Gobs has been generated by removing a
fraction q0 of links from an original network G. The
following procedure allows us to estimate the OS pre-
dictability curve of the original graph G. First, we select
the most suitable probabilistic network model for Gobs

(using the likelihood criterion detailed in Appendix C 4,
as in the previous subsection) to obtain the set of con-
nection probabilities pobs

ij , and we rank all pairs of nodes
in Gobs in decreasing order according to their connection
probabilities pobs

ij , that we relabel as pobs
ij ↔ pl, such that

pl > pl+1, ∀l. The next step is to estimate L̃, the ex-
pected number of links removed from G for a given value
of q. Let Eobs be the number of links in Gobs. Since there
is a fraction q0 of missing links fromG, the expected num-
ber of links in the complete network is E = Eobs/(1−q0).
Hence, the number of missing links when a fraction q of
links is removed from G and a new graph G̃ is produced
is L̃ = qEobs/(1− q0).

Now, imagine we are given one such incomplete graph
G̃ and the set of probabilities pl. The OS prediction
would then consist of the L̃ non-observed links of G̃
with highest connection probability, and the correspond-
ing precision would simply be the fraction of those which
actually exist in G. The idea behind the rest of the algo-
rithm is therefore to estimate, by a cumulative sequen-
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FIG. 3. Precision as a function of the fraction of missing links for different link prediction methods on eight
real-world networks. For each network and value of the fraction of missing links q, we generated 100 incomplete networks
Gobs on which we applied the link prediction methods. The pij curves correspond to the precisions given by the simulations
of the optimal strategy using the ranking of the inferred probabilities using the original networks. a-d: Using the S1 model.
e-h: Using the dc-SBM model. In all plots, the shaded areas represent the standard deviation of the results, typically larger
for smaller networks.

tial computation using the ordered list of probabilities,
both the expected number of non-links of G̃, H, and the
expected number of non-links of G̃ that would exist in
G, T . When H ≈ L̃ (that is, after predicting the top-

ranked L̃ links) the expected precision can be estimated
as 〈Q〉 = T/H. Hence, after initializing H and T to zero,
we visit every pair of nodes l = 1, 2, . . . and compute their
corresponding increments. Two different situations need
to be considered differently:

1. The two nodes in pair l are connected in Gobs. In
this case, the link must surely exist inG. Therefore,
in the ensemble of G̃ networks, the link does not ex-
ist (and counts as a correct prediction) with prob-
ability q, so every time one such link is visited, we
must update Tnew = Told + q and Hnew = Hold + q.

2. The two nodes in pair l are not connected in Gobs.
There are two possible reasons for the link not to
be observed:

a. The link belongs to G, but has been removed
from it with probability q when producing G̃.
The probability that the link is in the original
network is q0pl/(1 − pl + q0pl), so that the

probability for it not to belong to G̃ is

P
(
ãl = 0, al = 1|aobs

l = 0
)

= q
q0pl

1− pl + q0pl
. (3)

b. The link does not belong to G, and therefore it
cannot exist in G̃. Since the probability that
the link does not exist in G is (1 − pl)/(1 −

pl+q0pl) the corresponding probability simply
reads

P
(
ãl = 0, al = 0|aobs

l = 0
)

=
1− pl

1− pl + q0pl
. (4)

With these two results, we can readily update T
and H. Since T accounts for the expected number
of correct predictions, only case a. contributes, that
is,

Tnew = Told + q
q0pl

1− pl + q0pl
. (5)

As for H, both cases contribute, and so

Hnew = Hold +
1 + (qq0 − 1)pl
1− pl + q0pl

. (6)

The reason why the approximation of the OS pre-
dictability curve works even if the probabilities may not
be accurate enough for a link prediction method can be
understood by noting the following observation: in the
algorithm, we only use the highest numerical values of
the connection probabilities, without any mention what-
soever to the pair of nodes they refer to. Hence, as long
as the distribution of the values of the highest probabil-
ities is not drastically perturbed by the link removal—
that is, if the highest values of the probabilities inferred
on the original and incomplete networks exhibit similar
distributions—the OS predictability curve can be esti-
mated in networks with missing links, even if the specific
probabilities corresponding to the removed edges change
considerably and, as a result, they do not enable a good
link prediction.
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FIG. 4. Inference of predictability on eight different
real-world networks. The dashed curves show the mean
precisions given by the pij , that is, the OS predictability
curves, as in Fig. 3. For each network, we considered 10 in-
complete networks with q0 = 0.1, and for each incomplete
network, we computed its inferred predictability. The solid
curves and shaded areas represent the average and standard
deviation of such estimations over the 10 incomplete networks.

III. DISCUSSION

Link prediction in real networks remains a major chal-
lenge. A clear indicator is given by the current predic-
tion accuracy of the methods in experimental tests where
a part of the links is randomly removed, with precisions
typically far from its absolute maximum, even for the
best methods. Part of this seemingly poor performance
is explained by the intrinsic unpredictability of networks,
whose links are formed following processes that can be
mimicked by stochastic connectivity rules determining
the likelihood of interactions. Our probabilistic approach
to the predictability problem makes sense as far as this
assumption is fulfilled.

The optimal strategy for link prediction on networks
belonging to some model network ensemble, correspond-
ing to ranking the likelihood of missing links according
to the ensemble connection probabilities, outperforms all
the link prediction methods used on different network
ensembles. This implies that identifying the model that
best describes the connectivity of a given incomplete net-

work and inferring the ensemble connection probabilities
generating the complete network would yield the best link
prediction accuracies. We have illustrated this claim by
designing such link prediction strategy for soft Configura-
tion Model networks, the CMA method, which gives, by
far, the best predictions on such graphs, nearly reaching
the theoretical maximum. Since the sCM misses several
key properties of real networks, like the high level of clus-
tering, the CMA method does not perform well in real
situations. However, our results serve as a proof of prin-
ciple motivating to pursue a similar line of model-based
link prediction methods with some more realistic net-
work models, like the S1 and the dc-SBM. Furthermore,
the precision of the optimal strategy yields a novel in-
dicator of the inherent predictability of network models.
In particular, by calculating the predictability curves for
different values of the parameters of the models hereby
considered, we have quantified how several topological
properties affect the resulting network predictability. As
a general trend, network predictability increases as the
graphs depart from purely random structures.

In real networks, we propose a method to assess pre-
dictability based on the assumption that they are well
described by probabilistic network models. It should be
clarified that we are not assuming that real networks are
randomly sampled elements from some ensemble model.
Instead, the reason why we are addressing link predic-
tion from a model-based approach is the following. For
a given observed graph Gobs that we deem incomplete,
there generally exists a set of candidate original networks
{G′}, each of them containing all the links in Gobs plus
some others. What is more, some of these will have the
same probability of yielding Gobs upon removal of links
according to the noise channel. Hence, any link predic-
tion method must choose among these, and it must do
so by making assumptions on how the structure of the
original graph must have been like. These assumptions
are often based on some expected topological properties,
like the presence of triangles on which many link predic-
tion methods rely (or, as in the case of SPM, one assumes
certain behaviour upon a stochastic perturbation). What
we propose instead is to base those necessary assumptions
on more elaborate expected topological properties of real
networks, which have been vastly studied and are (to a
higher or lesser degree) captured by network models.

The OS predictability curve can be approximated from
fully observed real networks by inferring the correspond-
ing model ensemble probabilities and by measuring the
precision of the optimal strategy with them. This curve
can be used as a benchmark to assess the goodness of link
prediction methods, as it allows for their performances
to be contrasted against the best possible performance
over classes of networks which are statistically similar
to the one under study. The inference of the ensemble
connection probabilities is, however, a difficult task even
in fully observed real networks. Its reliability is subject
to the congruency between the network and the proba-
bilistic model that best describes the network structure.
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Typically, a network model can describe correctly the ob-
served connectivity structure of a real system only to a
limited extent. Nevertheless, selecting the most plausible
model —in terms of its posterior probability using vari-
ations of the stochastic block model— correlates with
the highest predictive performance in terms of missing
links [32]. Hence, the computation of full posterior dis-
tribution might in principle make possible to achieve the
OS precision in degree-corrected SBM. However, this is a
difficult task and relative probabilities between individ-
ual missing links are computed instead [32].

On the other hand, it may happen that some partic-
ular link prediction method, more tailored for a single
network, yields a better result than the optimal strat-
egy. Yet, in terms of the ensemble, such a method would
be overfitted and perform worse on average on the set
of similar networks defined by the same set of pij . This
has clear implications, for instance, in the prediction of
missing links as future events in time-evolving networks.
A link prediction method that is overfitted to specific re-
alisations, like present network snapshots, will certainly
fail more easily in foreseeing future connections.

A different issue is that, in situations in which one may
want to assess to what extent a given incomplete real net-
work can be predicted, the ensemble probabilities cannot
be directly inferred from the original network, as it is un-
known. Given that it is in general very difficult to infer
the original ensemble probabilities from the incomplete
network—which could be further used for actual link
prediction—for models other than the sCM, we propose
a method to approximate the OS predictability curve in
networks with missing links, with good accuracy. We re-
mark that a good approximation of the OS predictability
curve is not a guarantee that the calculated probabilities
are accurate enough to apply the optimal strategy as an
efficient link prediction method. This is, for instance, the
case of the S1 ensemble in the real-network experiments
shown in Fig. 3, for which the optimal strategy works
well as a link prediction method when using the inferred
probabilities of the complete network but gives bad re-
sults (not shown) when using the ones calculated from
the incomplete networks [33]. The reason for this phe-
nomenon can be understood from the description of the
algorithm that we use to approximate the OS predictabil-
ity curve, where we only use the highest numerical val-
ues of the connection probabilities, without any mention
whatsoever to the pair of nodes they refer to. Hence, as
long as the distribution of the values of the highest proba-
bilities is not drastically perturbed by the link removal—
that is, if the highest values of the probabilities inferred
on the original and incomplete networks exhibit similar
distributions—the OS predictability curve can be esti-
mated, even if the specific probabilities corresponding to
the removed edges change considerably and, as a result,
they do not enable a good link prediction. Therefore, the
approximation of the OS predictability cure in real net-
works with missing links gives a predictability limit that
can be used as a benchmark to gauge the quality of link

prediction methods in real networks.

Appendix A: Optimal prediction strategy for a
graph ensemble

We prove that the optimal strategy for link prediction,
that is, the one maximizing the expected precision in link
prediction experiments over ensemble instances, is the
one that generates Ginf from Gobs by adding the links
according to the connection probabilities {pij} ranked in
decreasing order. We compute the expected precision as

〈Q〉 =
∑
G

∑
Gobs

P (G,Gobs)Q(G,Gobs, Ginf)

=
∑
Gobs

P (Gobs)Q̄(Gobs, Ginf),
(A1)

where P (G,Gobs) is the joint probability distribution for
a graph G in the ensemble and an observed graph Gobs.
We have defined Q̄(Gobs, Ginf) as the expected precision
of the link prediction method over all possible original
graphs yielding Gobs upon random removal of links. No-
tice that, in the summation over original graphs G, we
must take into account that Ginf is independent of G;
this is the crucial property leading to a limit to the pre-
dictability of missing links. Indeed, since more than one
original network G can generate the same Gobs upon ran-
dom link removal, it is impossible for any link prediction
method, which maps Gobs into the same inferred net-
work Ginf regardless of the original G, to give a perfect
prediction.

We simplify the notation by enumerating all potential
links (disconnected pairs of nodes) in Gobs, such that
their ensemble probabilities can be written as pl, where
the index l runs from 1 to the number of potential links
M . Given the corresponding adjacency matrix elements
{al}1≤l≤M ofG, for every potential link l P (al = 1|aobs

l =
0) = P (al = 1, aobs

l = 0)/P (aobs
l = 0) = qpl/(1−pl+qpl),

where we have used Bayes’ rule. Then, the probability for
any graph G compatible with the observed graph Gobs,
P (G|Gobs), can be expressed in terms of the set of pairs
as

P (G|Gobs) =

M∏
l=1

(1− pl)1−al(qpl)
al

1− pl + qpl
. (A2)

Let us furthermore define the vector v = (a1, . . . , aM ),
which characterizes the set of potential links in G, and
the analogous vector vinf = (ainf

1 , . . . , ainf
M ) for Ginf . With

these two vectors, we can now express the precision as

Q(G,Gobs, Ginf) =
1

L
v · vinf , (A3)

where L =
∑
l al is the number of missing links in Gobs

with respect to G. Hence, we can express Q̄(Gobs, Ginf)
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in Eq. A1 as

Q̄(Gobs, Ginf) =

=
∑

G|Gobs∈S(G)

P (G|Gobs)Q(G,Gobs, Ginf)

=
∑

G|Gobs∈S(G)

M∏
l=1

(1− pl)1−al(qpl)
al

1− pl + qpl

1

L
v · vinf

=

 ∑
G|Gobs∈S(G)

M∏
l=1

(1− pl)1−al(qpl)
al

1− pl + qpl
v

 · vinf

L
,

(A4)

where S(G) stands for the set of subgraphs of G. In the
above calculation, we have used the linearity of the scalar
product and neglected the fluctuations in the number of
missing links (we assume that all original graphs generat-
ing the observed graph upon random link removal with
probability q have approximately the same number of
links, L = q

∑
i pi, with the sum now taken over all pairs

of nodes). One could actually give an exact result, with
no assumptions or approximations about the number of
missing links, by defining the precision as the fraction
of inferred links actually belonging to the original graph
(true positive rate). In that case, both L and the inferred
vector are the outcome of the link prediction method and
the above expression is exact.

Let us call the vector within the parenthesis in the
equation above v̄. Its n-th component can be computed
as ∑

G|Gobs∈S(G)

M∏
l=1

(1− pl)1−al(qpl)
al

1− pl + qpl
an =

=

1∑
a1=0

· · ·
1∑

aM=0

M∏
l=1

(1− pl)1−al(qpl)
al

1− pl + qpl
an =

=
qpn

1− pn + qpn

∏
l 6=n

(
qpl

1− pl + qpl
+

1− pl
1− pl + qpl

)
=

qpn
1− pn + qpn

.

(A5)

Hence, v̄ =
(

qp1
1−p1+qp1

, . . . , qpM
1−pM+qpM

)
.

We find that the average over graphs of the ensemble
of the precision given Gobs can be expressed as the scalar
product of two vectors,

Q̄(Gobs, Ginf) =
1

L
v̄ · vinf , (A6)

where L is the number of missing links in Gobs with re-
spect to G. The dimension of the vectors equals the num-
ber M of potential links (disconnected pairs of nodes)
in Gobs. If we enumerate the ensemble probabilities

as {pl}, we can write v̄ =
(

qp1
1−p1+qp1

, . . . , qpM
1−pM+qpM

)
,

where each entry gives the probability that the corre-
sponding link, missing inGobs, is inG. The entries in vec-
tor vinf =

(
ainf

1 , . . . , ainf
M

)
correspond to the adjacency-

matrix elements of Ginf for the set of potential links of
Gobs.

The precision is then maximized when the vectors are
maximally aligned. By definition of the link prediction
method M, vinf is a vector containing L values equal
to one, while the rest of entries are zero. Clearly, the
maximum value for the precision will be obtained if its
non-zero entries are placed at the same positions where
the L largest components of v̄ are located. Therefore,
given that v̄i > v̄j ⇔ pi > pj , the best link predic-
tion method is the one that adds the L missing links
according to the highest connection probabilities in the
ensemble. Moreover, the expected optimal precision for
the observed graph is given by the mean of the L largest
components of v̄.

Appendix B: Expected precision of the optimal
strategy in network ensembles

Let ensemble EN be characterised by the set of connec-
tion probabilities {pl}, where index l runs over all possi-
ble pairs of N nodes such that pl ≥ pl+1, ∀l. If links are
removed with probability q, the probability for an edge l
not to belong to Gobs is given by the sum of the probabili-
ties for it not to belong toG, P

(
al = 0, aobs

l = 0
)

= 1−pl,
and for it to belong to G and being randomly removed,
P
(
al = 1, aobs

l = 0
)

= qpl, that is,

P
(
aobs
l = 0

)
= 1− pl + qpl. (B1)

Now, in order to compute the expected precision of the
optimal strategy, the basic idea is to compute the ex-
pected number of correct predictions, T , when following
the ranking of probabilities until the expected number of
non-observed links, H, matches the expected number of
missing links, L = q

∑
l pl. Hence, we initialise both T

and H to zero and, for every link l = 1, . . ., we update
them as

Tnew = Told + P
(
al = 1, aobs

l = 0
)

= Told + qpl (B2)

and

Hnew = Hold +P
(
aobs
l = 0

)
= Hold + 1− pl + qpl. (B3)

When H ≈ L, T approximately yields the number of cor-
rect predictions of the OS and, therefore, the expected
precision can be computed as 〈Q〉 = T/H. This algo-
rithm can be repeated for different values of q in order to
obtain the expected predictability curve of the ensemble.

In ER networks pl = p, ∀l, and hence the expected
precision is 〈Q〉 = qp

1−p+qp , which agrees with the exact

value. Moreover, all link prediction methods reach this
precision. To understand this, all possible distributions
of the L values equal to one among the (otherwise zero)
different components of vector vinf in the proof of the
previous section in Appendix A yield the same scalar
product v̄ · vinf/L and, hence, the same precision.
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Appendix C: Network Ensemble Models

1. Soft Configuration Model (sCM)

In the soft Configuration Model [13], each node i is
assigned an expected degree κi, and each pair of nodes i
and j is connected according to the ensemble connection
probabilities given by

pij =
µκiκj

1 + µκiκj
, (C1)

with µ a free parameter controlling the number of result-
ing edges in the network. If one takes µ = 1/(〈k〉N), then
the degree of every node i in the generated networks, ki,
is approximately its expected degree, ki ≈ κi.

Given the degrees kobs
i in an observed graph which has

been produced by removing a fraction q of nodes from
a complete graph in the CM ensemble, we can estimate
the expected degrees and the connection probabilities in
the complete graph from Eq. C1 as

p̃ij =

kobs
i kobs

j

(1−q)〈kobs〉N

1 +
kobs
i kobs

j

(1−q)〈kobs〉N

. (C2)

2. S1 model

In the S1 model [14], every node i is characterized by
a hidden degree and an angular coordinate (κi, θi) rep-
resenting the popularity and similarity dimensions. The
angular coordinate is distributed at random in similarity
space, which is taken to be a one-dimensional sphere, or
circle, of radius R adjusted to have a density of nodes
equal to 1. Every pair of nodes is connected with a prob-
ability

pij =
1

1 +
(
R∆θij
µκiκj

)β , (C3)

where ∆θij stands for the angular separation between the
nodes in the similarity circle, and the parameters µ and
β control the average degree of the network and its level
of clustering, respectively. In the limit of N → ∞, and
for large degrees, the expected degree 〈ki〉 of a node i in
the generated network is its hidden degree 〈ki〉 = κi.

3. Degree-corrected Stochastic Block Model
(dc-SBM)

In the dc-SBM model [15], each node i is assigned an
expected degree ki and a group gi determining the com-
munity to which it belongs, which is chosen in an arbi-
trary way. Then, parameter θ for every node i is com-
puted as

θi =
ki
κgi

, (C4)

where κgi is the sum of the degrees of all the nodes in
group gi. Therefore, each group g fulfills the constraint∑

i∈g
θi = 1. (C5)

Finally, ω is a matrix of size K×K controlling the num-
ber of links between pairs of groups, where K is the total
number of groups. Each element of the matrix is calcu-
lated as

ωrs = λωplantedrs + (1− λ)ωrandomrs , (C6)

where ωrandomrs corresponds to a random network with
specific expected degree sequence, ωrandomrs = κrκs/2m,
where m is the total number of links in the network. On
the other hand, ωplantedrs generates group structure. For
example, in a network with four groups, this matrix is
given by

ωplanted =

κ1 0 0 0
0 κ2 0 0
0 0 κ3 0
0 0 0 κ4

 . (C7)

When λ = 0 links are placed among pairs of nodes
at random considering the degree sequence, while when
λ = 1 links are located within communities. Therefore,
any other values for λ will result in a combination of the
above extremes.

In the dc-SBM model, the number of links placed
among two nodes i and j follows a Poisson distribution
with mean θiθjωgi,gj . However, in the sparse-network
limit, the probability for multi-edges to occur is gener-
ally low, so θiθjωgi,gj is simply taken to be the connection
probability. Since these amounts can be larger than 1, in
this work, we consider

pij =
θiθjωgi,gj

1 + θiθjωgi,gj
. (C8)

4. Likelihood-based model selection

In this work, we consider two candidate models for
each real network: the dc-SBM and the S1 model. We
must therefore decide which one is more appropriate for
each network. To do so, we simply fit both and assess
which one is more congruent with the real data. Since
both models considered yield pairwise connection proba-
bilities, we can calculate the corresponding likelihood as

L =
∏
i<j

p
aij
ij (1− pij)1−aij . (C9)

In the above expression, the pij encapsulate the model
connection probabilities, whereas aij are the adjacency
matrix elements given by the data. The likelihood L
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hence gives the probability for the network under con-
sideration to be generated by the model. Therefore, if
the data is congruent with the model (and the fit is
conducted appropriately), the likelihood will reach rel-
atively high values. Now, in order to choose between the
models, we select the one with higher likelihood (notice
that, in practice, it is useful to consider the log-likelihood
logL instead, as it is less problematic numerically). Since
higher likelihood implies higher connection probabilities
on existing links and lower on non-existing ones, the OS
curve will be higher in the former case. In the table be-
low, we report the difference between the log-likelihoods
of the dc-SBM and the S1 model for all the networks
considered in the paper.

Appendix D: Data Description

Music [21] The nodes in the Music network represent
codewords extracted for every single chord in a large
set of songs, and directed links connecting consecutive
codewords represent transitions among them. To spar-
sify the network, the disparity filter [34] is applied with
parameter α = 0.01. Finally, we consider an undirected
version of network by replacing bidirectional links with
undirected ones.
Drosophila [22] Nodes represent neurons within the
Drosophila optic medulla and links represent fiber tracts
connecting neurons.
WTW [23] Backbone of the international trade network
in 2013, where nodes represent countries and links are
placed among significant trade partners.
Internet [24] Internet topology at the level of Au-
tonomous Systems (AS) corresponding to June 2009 and
collected by the Cooperative Association for Internet
Data Analysis (CAIDA). We removed nodes with degree
lower than 5 to produce a reduced size version.
Florida Food Web [25] Food web in the Florida Bay
ecosystem, in which every directed link connects a prey to
its predator. We consider the undirected version of this
network created by placing an undirected link between
every pair of nodes connected by at least a single directed
link.
Word Adjacency [26] Adjacency network where nodes
represent a selected set of common nouns and adjectives

in the novel of David Copperfield by Charles Dickens,
and links are placed between adjacent pairs of words in
the book.
Karate [27] Social network between members of a karate
club where each link connects a pair of members who
communicate outside the club.
Polbooks [28] Nodes of this network represent the books
on the topic of the US politics and links represent the
pairs of books bought on Amazon by the same customers.
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